It looks like both AMD and NVIDIA will be coming together to power the Perlmutter Exascale super-computer. Designed by CRAY, the supercomputer would pave the way to exascale computing but what's most interesting about this supercomputer is the fact that it will utilize AMD's and NVIDIA's next-generation products under the hood.
AMD 7nm+ EPYC Milan CPUs and NVIDIA's Volta-Next GPUs To Power The Exascale Perlmutter Supercomputer
The new supercomputer was discussed in a presentation by the US Department of Energy where it was stated that both next-generation AMD and NVIDIA hardware would be powering it. During the Supercomputing 2018 event, Cray displayed their Shasta Computer Blade server which will be used as the main platform inside the supercomputer. We can expect thousands of nodes inside the new supercomputer.

Starting off with the details, we are first looking at the entirely water-cooled chassis which will be able to house 8 of AMD's next-generation EPYC Milan processors. The system is split into a dual-section design with one featuring cooper water blocks over the Milan CPUs and the other four CPUs on an inverted PCB, that is also water cooled. There are a total of 64 DIMM slots which are also water cooled.

Image Credits: Tomshardware
Some little tidbits of the EPYC Milan CPUs were also mentioned with the highlight being them based on the new Zen 3 architecture that utilizes the 7nm+ process node from TSMC. There will also be support for AVX2 SIMD (256-bit) instructions while the core count is yet to be finalized so the company is currently using the maximum 64 core count of the upcoming EPYC Rome 7nm processors as a baseline for their platform. The CPUs will feature 8 channel memory for a total of 256 GB capacity per node. Each node will be using a 25 GB/s Slingshot connection, acting as the main interconnect for the system.
AMD CPU Roadmap (2017-2022)
| Year | 2024 | 2023 | 2021-2022 | 2021 | 2020 | 2019 | 2018 | 2017 |
|---|---|---|---|---|---|---|---|---|
| Architecture | Zen (4) / Zen (5) | Zen (4) / Zen (4C) | Zen (4) / Zen 3 (+) | Zen (3) / Zen 3 (+) | Zen (3) / Zen 2 | Zen (2) / Zen+ | Zen (1) / Zen+ | Zen (1) |
| Process Node | 5nm / 3nm? | 5nm | 5nm / 6nm | 7nm | 7nm | 7nm | 14nm / 12nm | 14nm |
| Server | EPYC Turin | EPYC Bergamo | EPYC 'Genoa' | EPYC 'Milan' | EPYC 'Rome' | EPYC 'Rome' | EPYC 'Naples' | EPYC 'Naples' |
| Max Server Cores / Threads | 256/512 | 128/256 | 96/192 | 64/128 | 64/128 | 64/128 | 32/64 | 32/64 |
| High End Desktop | Ryzen Threadripper 8000 Series | Ryzen Threadripper 7000 Series | Ryzen Threadripper 6000 Series (TBD) | Ryzen Threadripper 5000 Series (Chagall) | Ryzen Threadripper 3000 Series (Castle Peak) | Ryzen Threadripper 3000 Series (Castle Peak) | Ryzen Threadripper 2000 Series (Coflax) | Ryzen Threadripper 1000 Series (White Haven) |
| Ryzen Family | Ryzen 8000 Series | Ryzen 7000 Series | Ryzen 6000 Series | Ryzen 5000 Series | Ryzen 4000/5000 Series | Ryzen 3000 Series | Ryzen 2000 Series | Ryzen 1000 Series |
| Max HEDT Cores / Threads | TBD | TBD | TBD | 64/128 | 64/128 | 64/128 | 32/64 | 16/32 |
| Mainstream Desktop | Ryzen 8000 Series (Granite Ridge) | TBD | Ryzen 7000 Series (Raphael) | Ryzen 5000 Series (Vermeer-X) | Ryzen 5000 Series (Vermeer) | Ryzen 3000 Series (Matisse) | Ryzen 2000 Series (Pinnacle Ridge) | Ryzen 1000 Series (Summit Ridge) |
| Max Mainstream Cores / Threads | TBD | TBD | 16/32 | 16/32 | 16/32 | 16/32 | 8/16 | 8/16 |
| Budget APU | Ryzen 8000 (Strix Point Zen 5) | Ryzen 7000 Series (Phoenix Zen 4) | Ryzen 6000 Series (Rembrandt Zen 3+) | Ryzen 5000 Series (Cezanne Zen 3) | Ryzen 4000 Series (Renoir Zen 2) | Ryzen 3000 Series (Picasso Zen+) | Ryzen 2000 Series (Raven Ridge) | N/A |









