It looks like the clock speeds for AMD's EPYC Rome flagship have been revealed through a recent presentation for the new 'Hawk' supercomputer that is being developed by HLRS and HPE. Details of the clock speeds for AMD's EPYC Rome chips are crucial since they will be the first outing of a high-performance 7nm process based chip for the HPC market.
AMD EPYC Rome With 64 Zen Core 2 Cores Based on 7nm Technology Clocks In At 2.35 GHz Inside Hawk Supercomputer
AMD did their first public unveiling of the EPYC Rome processors last week. A lot of details were revealed officially and I personally think that the 2nd Generation Rome chips are going to be a major dent in Intel's Xeon / Server market share when they ship out next year based on cost and performance hints that we have received after the event concluded.
AMD only revealed one part at their presentation which featured 64 cores, arranged in eight 7nm chiplets(8 core die each), surrounding a large 14nm I/O die. The design is really revolutionary for the industry as it paves the way for cost-effective and high-performance solutions not only in the CPU market but also the GPU market. Details regarding the chip design were abundant, but AMD still left out the clock speeds, which will possibly be kept under wraps until the entire EPYC Rome family makes its formal debut sometime next year.

Now as far as the Hawk supercomputer is concerned, it will be packing the flagship AMD 64 core EPYC Rome processors which will be clocked at 2.35 GHz. Now, this is definitely an interesting clock speed, but we should go into more detail. We don't know if this clock speed is a base clock or boost clock, but we can speculate a bit on this.
For starters, the current flagship EPYC 7601 clocks in at a base clock of 2.2 GHz and boosts all the way up to 3.2 GHz (1-core) and 2.7 GHz (all core). That part was based on the 14nm process node and featured 32 cores, 64 threads.

Here, we are talking about twice the cores and thread count. Usually, 3rd parties list the max clock speeds for a specific chip that they are going to use in their products. If the 2.35 GHz clock is for the base, it's a good number considering the number of cores we are talking about. But here's the thing, if 7nm clocks well, then this could very well be the base clock with a much higher boost frequency across single / all cores. In the latter case, AMD would just destroy the benchmarks with stellar IPC gains that are currently sitting around 28% (not entire workload based) over Zen+.
AMD CPU Roadmap (2017-2022)
| Year | 2024 | 2023 | 2021-2022 | 2021 | 2020 | 2019 | 2018 | 2017 |
|---|---|---|---|---|---|---|---|---|
| Architecture | Zen (4) / Zen (5) | Zen (4) / Zen (4C) | Zen (4) / Zen 3 (+) | Zen (3) / Zen 3 (+) | Zen (3) / Zen 2 | Zen (2) / Zen+ | Zen (1) / Zen+ | Zen (1) |
| Process Node | 5nm / 3nm? | 5nm | 5nm / 6nm | 7nm | 7nm | 7nm | 14nm / 12nm | 14nm |
| Server | EPYC Turin | EPYC Bergamo | EPYC 'Genoa' | EPYC 'Milan' | EPYC 'Rome' | EPYC 'Rome' | EPYC 'Naples' | EPYC 'Naples' |
| Max Server Cores / Threads | 256/512 | 128/256 | 96/192 | 64/128 | 64/128 | 64/128 | 32/64 | 32/64 |
| High End Desktop | Ryzen Threadripper 8000 Series | Ryzen Threadripper 7000 Series | Ryzen Threadripper 6000 Series (TBD) | Ryzen Threadripper 5000 Series (Chagall) | Ryzen Threadripper 3000 Series (Castle Peak) | Ryzen Threadripper 3000 Series (Castle Peak) | Ryzen Threadripper 2000 Series (Coflax) | Ryzen Threadripper 1000 Series (White Haven) |
| Ryzen Family | Ryzen 8000 Series | Ryzen 7000 Series | Ryzen 6000 Series | Ryzen 5000 Series | Ryzen 4000/5000 Series | Ryzen 3000 Series | Ryzen 2000 Series | Ryzen 1000 Series |
| Max HEDT Cores / Threads | TBD | TBD | TBD | 64/128 | 64/128 | 64/128 | 32/64 | 16/32 |
| Mainstream Desktop | Ryzen 8000 Series (Granite Ridge) | TBD | Ryzen 7000 Series (Raphael) | Ryzen 5000 Series (Vermeer-X) | Ryzen 5000 Series (Vermeer) | Ryzen 3000 Series (Matisse) | Ryzen 2000 Series (Pinnacle Ridge) | Ryzen 1000 Series (Summit Ridge) |
| Max Mainstream Cores / Threads | TBD | TBD | 16/32 | 16/32 | 16/32 | 16/32 | 8/16 | 8/16 |
| Budget APU | Ryzen 8000 (Strix Point Zen 5) | Ryzen 7000 Series (Phoenix Zen 4) | Ryzen 6000 Series (Rembrandt Zen 3+) | Ryzen 5000 Series (Cezanne Zen 3) | Ryzen 4000 Series (Renoir Zen 2) | Ryzen 3000 Series (Picasso Zen+) | Ryzen 2000 Series (Raven Ridge) | N/A |









