yitit
Home
/
Computing
/
Artificial intelligence beats 'Ms. Pac-Man' with a perfect score of 990,990
Artificial intelligence beats 'Ms. Pac-Man' with a perfect score of 990,990-February 2024
Feb 12, 2026 2:38 AM

  Divide and conquer: How Microsoft researchers used AI to master Ms. Pac-Man

  A team of researchers have managed to develop an artificial intelligence capable of mastering the arcade classic Ms. Pac-Man. Maluuba — a Canadian deep learning startup that was Recommended Videos

  acquired by Microsoft in January 2017 — used a divide-and-conquer technique to empower its system to complete the Atari 2600 version of the game with a perfect score of 999,990. Related

  Xbox Game Pass adds Vampire Survivors, Pac-Man, and more Casio’s Pac-Man tribute watch is about as retro and geeky as watches can get Ms. Pac-Man, three other titles lead Arcade 1Up’s 2020 lineup

  Maluuba’s approach is interesting, because it breaks down the strategies and maneuvers required to beat the game into their component parts. Various different agents focus on one job and one job alone, while an agent put in charge of managing from the top makes high-level decisions about what actions should be prioritized.

  For instance, some agents might be tasked with chasing down pellets, while others focused on avoiding enemies. The decision-making agent would then choose the best option based on weighted logic — if a hundred agents wanted to move left to grab a pellet, but only three wanted to move right to avoid a ghost, it would elect to move right because colliding with the enemy would end the run.

  Ms. Pac-Man is relatively widely used in AI research because of the unpredictable nature of its gameplay, according to a post on the official Microsoft blog. Steve Golson, who is credited as co-creator of the original arcade version of the game, notes that this was intentional, as the game was reliant on players spending quarter after quarter on extra lives for it to be a financial success.

  Maluuba used reinforcement learning, a process by which an AI receives positive or negative feedback for each attempt it makes at a problem, to address this unpredictability. It’s hoped that reinforcement learning could help foster systems that are better equipped to make decisions on their own, compared to those that are trained via supervised learning, where the system is simply fed good and bad examples to establish a base of experience.

Comments
Welcome to yitit comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Login to display more comments
Computing
Recent News
Copyright 2023-2026 - www.yitit.com All Rights Reserved